Image Segmentation Using Excess Entropy

نویسندگان

  • Anton Bardera
  • Imma Boada
  • Miquel Feixas
  • Mateu Sbert
چکیده

We present a novel information-theoretic approach for thresholdingbased segmentation that uses the excess entropy to measure the structural information of a 2D or 3D image and to locate the optimal thresholds. This approach is based on the conjecture that the optimal thresholding corresponds to the segmentation with maximum structure, i.e., maximum excess entropy. The contributions of this paper are severalfold. First, we introduce the excess entropy as a measure of the spatial structure of an image. Second, we present an adaptive thresholding method based on the maximization of excess entropy. Third, we propose the use of uniformly distributed random lines to overcome the main drawbacks of the excess entropy computation. To show the good performance of the proposed segmentation approach different experiments on synthetic and real brain models are carried out. 2 A. Bardera, I. Boada, M. Feixas and M. Sbert

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant Classification in Images of Natural Scenes Using Segmentations Fusion

This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...

متن کامل

A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image

Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...

متن کامل

A comparative performance of gray level image thresholding using normalized graph cut based standard S membership function

In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...

متن کامل

SAR Image Segmentation using Vector Quantization Technique on Entropy Images

The development and application of various remote sensing platforms result in the production of huge amounts of satellite image data. Therefore, there is an increasing need for effective querying and browsing in these image databases. In order to take advantage and make good use of satellite images data, we must be able to extract meaningful information from the imagery. Hence we proposed a new...

متن کامل

Fuzzy Entropy Based MR Image Segmentation Using Particle Swarm Optimization

An image segmentation technique based on fuzzy entropy is applied for MR brain images to detect a brain tumor is presented in this paper. The proposed method performs image segmentation based on adaptive thresholding of the input MR images. The image is classified into two membership functions, whose member functions of the fuzzy region are Z-function and S-function. The optimal parameters of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing Systems

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2009